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SUMMARY

Equations, which can be integrated on high-speed computing machines,

are developed for all three components of induced velocity at an arbi-

trary point near the rotor and for an arbitrary harmonic variation of

vorticity. Sample calculations for vorticity which varies as the sine

of the azimuth angle indicate that the normal component of induced

velocity is, in this case, uniform along either side of the lateral
axis.

INTRODUCTION

The mutual interference between the rotors_ wing, and tail of a

helicopter or convertiplane may have a large effect upon the overall

performance and stability of the aircraft. Since mutual interference

may entail significant performance penalties, it is necessary to con-

sider such effects in the initial stages of design. The accurate

assessment of mutual interference, however, requires a knowledge of the

flow field of a lifting rotor. The most complete study of the induced

velocities near a lifting rotor is that of reference i, which shows that

the flow may be calculated with reasonable accuracy provided that a

representative distribution of disk loading is assumed. The theory of

reference i, however, is based upon existing induced velocity calcula-

tions. Since these calculations consider only the case of uniform

azimuthwise vorticity_ the theory, as given in reference i, can only

be used to represent disk loadings for which the circulation distribu-

tion is circularly symmetrical. As a consequence, the flow field,

according to reference i, is symmetrical about the longitudinal plane

of symmetry of the rotor. The measured flow field of reference I_

however, shows significant differences in the flow on opposite sides

of the rotor. Thus, it is desirable to examine the possibility of

extending the available theory to include the varying components of

vorticity which are known to exist in the wake of the rotor.
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The calculation of the flowfield is greatly complicated by the
inclusion of terms representing azimuthwise variations in circulation.
The only investigation which has considered these effects is that
described in reference 2, which examined the induced velocity distribu-
tion on the lateral axis of the rotor for sin ¢ circulation. The
actual calculation was based upon a crude approximation to the wake that
is believed to correspond to this distribution of circulation; further-
more, it is not possible to extend the analysis of reference 2 to points
other than those which lie on the lateral axis. Thus, it is necessary
to consider the problem from a different viewpoint if completely general
results are to be obtained.

The present paper develops equations for all three componentsof
induced velocity at an arbitrary point near the rotor and for an arbi-
trary harmonic of the azimuthwise distribution of circulation. This
derivation is accomplished without recourse to the approximations of
reference 2. Unfortunately, the final integration (with respect to _)

is not possible in closed form; however, numerical results may be

obtained by the use of modern high-speed computing machines. As an

example, the distribution of the normal component of induced velocity on

the lateral axis is computed for sin @ circulation. These calculated

velocities are compared with those of reference 2.
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SYMBOLS

vector dist_ce from point P in space to vortex element

(fig. 1), ft

A = x' cos _ + y' sin

B = z' cos X - x' sin X

C = (y' cos _ - x' sin 4) cos X - z' sin X sin

d_ vector length of vortex element, ft

(dP_ constant portion of wake vorticity, ft/sec

f(_) Fourier sine-cosine series (normalized with respect to the

(dF)) describing the azimuthwise variationconstant term d-Lo

of vorticity in the outer wake; the negative derivative of

f(_) describes the corresponding vorticity in the inner

wake
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i,j,k

L

P

R

Rc

Ro

V

wo

X,Y,Z

x,y,z

P

A

unit direction vectors along X-, Y-, and Z-axes, respectively

running coordinate alor_ edge of wake, ft

arbitrary point in space

vector induced velocity at P, ft/sec

rotor radius, ft

distance between P and edge of rotor disk at _ (fig. i),

VR 2 + x2 + y2 + z2 _ 2R(x cos @ + y sin 4), ft

distance between P and center of rotor (fig. i),

_x2 + y2 + z2, ft

vortex-element radius, measured parallel to tip-path plane

from wake axis (fig. l(b)), ft

vector distance from origin to surface of cylindrical wake, ft

induced velocity components directed parallel to X-, Y-,

and Z-axes, respectively, ft/sec

forward speed of rotor, ft/sec

normal component of induced velocity at center of rotor with

uniform radial and azimuthwise circulation, positive

upward, ft/sec

Cartesian coordinate system centered in rotor, X positive

rearward, Y positive on advancing side of rotor, _nd

Z positive upward

Cartesian coordinates of point P (fig. i), ft

angle of attack of rotor tip-path plane, radians

blade circulation, ft2/sec

V sin _ + w0

rotor inflow ratio, _R

V cos
rotor tip-speed ratio, _R
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wake skew angle, angle between axis of tip-path plane and

axis of wake_ tan -I _, radians

azimuth angle_ measured in directiom of rotation from down-

wind position (X-axisl, radians

rotor rotational speed, radians/sec

Primes on symbols denote nondimensionalization with respect to R.

THEORY

Assumed Wake

The shape of the wake assumed as a basis for the present calcula-

tions is an extension of that used for previous rotary-wing induced-

velocity calculations (refs. 2 and 3, for example). Its general char-

acteristics are repeated herein for completeness.

The circulation on the blades is considered uniform along the

radius. (This assumption is in no way a restriction, since the results

obtained under it can be converted to correspond with any arbitrary

radial circulation distribution by the methods of ref. i.) The free

vortices leave the blade tip and are carried off with the speed and

direction of the mean flow at the rotor. These vortices thus lie on

the surface of an elliptic cylinder (fig. l(a)). The vortices are

assumed to be so closely spaced that the cyliiLder may be considered to

be a sheet of continuous vorticity. This ass1_ption restricts the

analysis to obtaining only the time-averaged value of the induced veloc-

ity (ref. 4). The axial component of vortici_y is assumed to be negli-

gible. This assumption is equivalent to stat_ing that the rotor tip

speed is infinite (ref. 5)# so that the circulation is proportional

merely to the local disk loading.

The essential addition in the present analysis is that the wake

vorticity is allowed to vary in any arbitrary manner with the azimuth

position. As a consequence of this azimuthwise vorticity variation,

the blades must also shed vorticity at their _railing edges. Figure 2

illustrates this radial vorticity for a simpl_, case in which the circu-

lation increases by an arbitrary constant over one sector of the rotor

disk. In practice, however, the circulation (:hanges are continuous, so

that the wake cylinder will be completely filled with radial vorticity

of a strength proportional to the derivative of the circulation.
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The effect of the constant part of the blade circulation itself on

the induced velocities is zero on a time-averaged basis. This result is

not obtained, however, for the harmonic components of the blade circula-

tion. Nevertheless, this contribution is ignored in the present analysis

since it may be obtained relatively easily, and since it is zero in the

only numerical example considered herein.

The derivations which follow include all three components of the

induced velocity. For convenience, the effects of the outer wake (the

circumferential vorticity around the cylinder) and the inner wake (the

radial vorticity within the cylinder) are considered separately.

Induced Velocities of Outer Wake

The induced velocities of the outer wake are found by integrating

the Biot-Savart law over the entire wake. Thus,

d_ - i dP d_ × _ dL

From figure l(a), the following quantities may be determined by

inspection:

: i(R cos _ + L sin×) + 3(R sin_) + _(-L cos ×)

dN = [[(-R sin 9) + ](R cos _) + k(O)]d_

: I(R cos _+Lsin×- _) + 3(R sin_- y) +_(-ncos ×- z)

(i)

Substituting these values into equation (i) and integrating yields

_I _ I i _
I -sin _ COB _ O

= R__ _r (R oos_+ L_in×- x) (Rsin_-y) (-Lcos×- z)

4_J0 Jo d-Z

dL d_

__(R cOS _ + L sin X - x) 2 + (R sin _ - y)2 + (-L cos X - z)2_3/2

(2)
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ise rosoo as horoisthoconstant_-Z Yf

part of the vorticity, and where f(_) is a Fourier series in @ (nor-

malized with respect to the constant term), it is evident that the only

term which can produce a normal induced velocity at the center of the

rotor is the constant term. Thus, the induced velocity at the center of
the rotor is

l( )0Wo = -/_Z (8)

so that finally

w i

w0 2_ _0 2_ [1 - (X' COS _/ + y' sin _) + R c' sin X cos _]d_/
[Rc' + (cos _ - x')sin ×+ z' cos ×]Rc'

(9)

Longitudinal component.- The longitudinal (or i) component of the

induced velocity is, from equation (2),

u = dP (z + L cos X)cos _ dL d$, (i0)
dL

_0 Jo JR2 + X2+ y2+ z2 - 2R( .... _ + y sin _) + 2L( .... X- x sin X+R sin× cos _') + L2] 3/2

_e integration follows in precisely the same manner as that for

the normal component. The final expression is found to be

2_/-

u _ -l_ f(_)
w 0 2_ J0

(z' + R c' cos X)cos _ d@

[Rc' + (cos 9 - x')sin X + z' cos JR c'

(Ii)

Lateral component.- From equation (2), the lateral (or 3) com-

ponent is

v : oR _ _ d__PP (Z + L cos X)sln _ dL d_

Jo ]0 .2 + x2 + y2 + z2 . 2R(x cos _/ + y sin _) + 2L(z cos X - x sin X + R sin X cos _) + L 2 3/2

It is apparent that equation (12) differs from equation (i0) only

by a factor, tan X, which does not enter into the integration with

(12)
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respect to L. Thus_ the final expression for the lateral component

of induced velocity may be written immediately, on comparison with

equation (ii), as

f(¢)
(z' + Rc' cos ×)sin @ d@

Rc' + (cos @ - x')sin X + z' cos I Re'

(i_)

Induced Velocities of Inner Wake

The induced velocities of the inner wake are found by integrating

over the wake, where now, from figure l(b),

= [(r cos @ + L sin X) + 3(r sin _) + k(-L cos X)

: [i(cos +  (sin +d[ dr

a = [(r cos @ + L sin X - x) + _(r sin _- y) + k(-L cos X - z)

L
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Substituting these expressions into equation (i) and integrating

yields

i

cos _ sln _ 0 IdL dr d_
(r cos _ + L sin X - x) (r sin _ - _ ) (-L cos X - z)

(r cos _ + L sin X - x) 2 + (r sin _ - })2 + (-L cos X - z)J _/2

Normal component.- From equation (14), the normal (or k) com-

ponent of induced velocity is

1 _ _k_/ sin _ - y cos _/ - L s;n X sln _)B_L dr d_

r 2 + x 2 + y2 + z 2 . 2r(x cos _ + y sin _) + 2L(z e,,s X - x sin X + r sin X cos _) + L

(_5)
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In certain cases, the argument of the inverse tangent term becomes

indeterminate. The limiting value, however, may be found by the repeated

application of L'Hopital's rule. Limiting values for a few of the more

important cases are given in the following table:

Location of P

y = z = 0

x = z = 0

Azimuth angle, _,
radians

0

Arc tangent,

radians

+ m

2

0

-:_ X-K
2 2

3_

2

Longitudinal component.- The longitudinal (or _) component of

induced velocity is, from equation (14),

(23)

Equation (23) may be integrated with respect to L to yield

2_ _R

0 O r 2 + x2 + y2 + z2 - 2r(x cos _ + y sin i) + z cos X - x sin X + r sin X cos i r2 + x2 + y2 + z2 - 2r(x cos i + F sln _)

Integrating with respect to r, by means of equations (A5)

and (AI4) of the appendix, results in

(2L.)
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is made in this paper to provide general flow charts for the various

harmonics of vorticity such as has been done previously for the case of

constant vorticity (for example, ref. 3). A few calculations for the

normal component of induced velocity on the lateral axis of the rotor

have been made for a unit sin _ vorticity. These cases are discussed

in the following sections.

Distribution of Induced Velocity on Lateral Axis

The calculated normal induced velocities are presented in figure 3

for the case of the lateral axis and a unit sin _ vorticity. The skew

angle is tan -1 4. The numerical results indicate that the induced veloc-

ities are uniform on either side of the axis and discontinuous at the cen-

ter of the rotor. This distribution corresponds to that of the assumed

sin _ vorticity distribution, which is also uniform on either side of

the axis but discontinuous at the center of the rotor. This close cor-

relation between vorticity (or disk load) distribution and the induced

velocities on the lateral axis was also noted in the experimental meas-

urements of reference 1.

The contribution of the inner and outer wakes individually is also

shown in figure 3. The contribution of each part of the wake is a linear

function of radial position - the outer wake _ortion increasing_ and the

inner wake portion decreasing with radius. Except for positions close

to the edge of the rotor disk (y' > 0.85), the inner wake produces the

largest contribution to the total induced vek>city for sin _ vorticity.

Reference 2 treats the induced velocitie_i_ due to sin @ vorticity

by means of a cruder approximation to the rotor wake. It is interesting

to note that the actual induced velocity distribution (ref. 5) on the

lateral axis, as obtained under the assumptions of reference 2, should

be essentially the same, except in magnitude, as that obtained in the

present analysis. The simple analysis of refc_rence 2 cannot, however,

be extended to locations other than the later_l axis.
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Effect of Skew Angle

Since the absolute value of the induced relocity for sin _ vortic-

ity is constant on the lateral axis, the variF_ion with skew angle can be

illustrated very compactly as in figure 4. Here the uniform value of

induced velocity is shown as a function of t_n X for a range of skew

angles encompassing the major portion of the i_elicopter flight range. It

is evident that the effect of sin _ vorticity increases somewhat with

skew angle. The corresponding induced velocity from reference 2 for unit

sin _ vorticity is w_ = 2.0, irrespective of skew angle. Thus, even
w0



though a strict interpretation of the procedures of reference 2 leads

to the correct shape of the velocity distribution, it also leads to a

considerable overestimate of the magnitude of the induced velocities.

CONCLUDING REMARKS

L
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Equations, which can be integrated by use of high-speed computing

machines, have been developed for all three components of induced veloc-

ity at an arbitrary point near the rotor and for an arbitrary harmonic

of the vorticity distribution. Results of this investigation of the

induced velocities near a lifting rotor with nonuniform azimuthwise

vorticity distribution show that for a vorticity distribution which

varies as the sine of the azimuth angle, the normal component of induced

velocity along either side of the lateral axis is uniform and antisymmet-

tic about the center of the rotor.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Field, Va., March i0, 1960.
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APPENDIX

EVALUATION OF CERTAIN INTEGRALS OCCURRING IN THE ANALYSIS

The analysis of the inner wake involves integrals of the form,

f dx and f dxx+ (cx+ d)_ _+ cx+ d

where

X = a + bx + x2

and where x is an arbitrary variable and a, b, c, and d are

arbitrary constants.

Both forms may be evaluated by use of the substitution (item 255,

ref. 6) ,

u = _- x (_)

The first form is the simpler of the two and will be evaluated

first. The indicated substitution (eq. (AI)) reduces this form to

L

7

9

7

f dx = f 2 du (m)X+ (ox+_)_ (c- 1)u2+ (b-2d)u _ (db-a- do)

The right-hand side of equation (A2) may _e integrated by item 67

of reference 6 to yield

/ dx _ 4 tan-l[2(c - l)u + b - 2dI (AS)

where

q = 4db(o- i) + 4a(1- c2) _ (b - 2d)2 (A4)
v
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The final expression is obtained by returning equation (AS) to the

original variable x which results in

dx _ 4x + (c_+ d)_ _ __ tan_l[2(c-:)(_-x) + b - 2d] (AS)

L
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where q is as given previously in equation (A4).

Evaluation of the second form is a more lengthy task but proceeds

in the same manner. Making the same substitution (eq. (AI)) as before

yields

dx
_-X+ cx+ d

= 2(bu - a - u2)au

(b- 2u)[u2(_- l)+ u(b- 2d)+ (db- a - _o)]
(A6)

Now separate the right-hand side of equation (A6) into partial

fractions to obtain

I dx _ i _ 2 du + 2c
_+ cx + d i + c Jb - 2u i + c

j_ u du[u2(o_ :) + _(b - 2_) + (_b- _ - _)]

2d ; du:+o [u2(__:)+u(b_2a)+ (_b-_-_o)]
(A7)

The first term may be integrated by inspection; the second term,

by item 72 of reference 6 to give

I _ _ -i loge( b _ _) +_+cx+d l+c

c_ :og_._2:c:L.-:)÷u(b-2_)+ (db-a- _o,,'I._c2 1

bc - 2d _ du

c2 - 1 J [u2(c - l) + u(b - 2d) + (db - a - ac)]

(A8)
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The remaining integral may be evaluated by means of item 67 of

reference 6 to yield

f dx -i log e (b 2u)
_]-X + cx + d 1 + c

r ]
c l°gelu2(cL--ii+_(b-2d)+(ab-a- aclJj

c 2 - i

bc - 2d 2 tan_l[.2(c - l)u + b - 2d]
(A9)

where q is defined in equation (A4).

Returning equation (A9) to the origina_ variable x results in

+ cx + d c2 - i

c2 - i

be_2d2tan-l[2 c- (AIO)

Note that

so that the logarithmic terms of equation (AI0) may be combined to

yield

f dx _ c loge(_+ cx + d) + i
+ cx + d c2 - i c2 - i

loge(b + 2x - 2_)

be - 2d 2 tan_II2(c- i)(_ - x) + b - 2d]
(All)
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The presence of the logarithmic terms in equation (All) occasions

imaginary values for the integral if either I_ + cx + d) or
#

_b + 2x - 2_I is negative. Provided that these terms are monotonically

negative, this result may be avoided as follows:

Rewrite equation (A7) as

f dx _ i _ 2 du 2c
_+ cx + d i + c j2u - b i + c u du[u2(l- o) + _(_d - b) - (db- _ - _o)]

2d
du

[u2(° - i) + u(b :_d) + (db - a - ae)]l+c (_)

Integration, as in equation (AS), of the first two terms results in

C.dx _ -i loge(2U - b) + e2
_+cx+d l+c - I

--loge[u2(l - o)+ u(2_-bl- (db- a - ao)]

bc - 2d / du
e2 - 1 [u2(c - i)+ u(b --2d) + (db - a- ac)]

Comparison of equations (AS) and (AlS) indicates that the only

difference is a reversal in sign of the arguments of the logarithmic

terms. Therefore, as long as these arguments are monotonically either

positive or negative, the final expression may be rewritten as

J dx _ c logel_+ cx + dl + i
_X + cx + d c 2 - i c 2 - i

logelh + 2x-2_I

where, again,

bc - 2d 2 tan-l[2(c - i)(_ x) + b - 2d ]
c 2 - i

q --4db(o- l)+ 4a(l- °2)_ (b- 2d)2

(Al4)
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(a) Outer wake.

Figure 1.- Rotor wake system.
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Figure i.- Concluded.
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